What really is Fermi Paradox.

 

Droidika blogs.jpg

Fermi Paradox,hold on alright let’s have a little background of it.Have you ever wondered while watching a super starry sky that;are we all alone ? does life exist on other planets? when there are so many stars and Planets and  life only on our planet,does that make sense.These are the questions probably everyone deliberated once in his life.

Fermi was a Physicist born in Italy in 1901 and died in US 1954.he also raises argument with Michael H. Hart . Which are following :-

  • There are billions of stars in the galaxy that are similar to the Sun, many of which are billions of years older than Earth.
  • With high probability, some of these stars will have Earth-like planets, and if the Earth is typical, some might develop intelligent life.
  • Some of these civilizations might develop interstellar travel, a step the Earth is investigating now.

Even at the slow pace of currently envisioned interstellar travel, the Milky Way galaxy could be completely traversed in about a million years.According to this line of thinking, the Earth should have already been visited by extraterrestrial aliens. In an informal conversation, Fermi noted no convincing evidence of this, leading him to ask, “Where is everybody?” There have been many attempts to explain the Fermi paradox,primarily suggesting either that intelligent extraterrestrial life is extremely rare, or proposing reasons that such civilizations have not contacted or visited Earth.

 

 

DrakeMessage.JPG

A graphical representation of the Arecibo message—Humanity’s first attempt to use radio waves to actively communicate its existence to alien civilizations.


This sounds a bit silly at first. The fact that aliens don’t seem to be walking our planet apparently implies that there are no extraterrestrials anywhere among the vast tracts of the Galaxy. Many researchers consider this to be a radical conclusion to draw from such a simple observation. Surely there is a straightforward explanation for what has become known as the Fermi Paradox. There must be some way to account for our apparent

 The Fermi paradox is a conflict between arguments of scale and probability that seem to favor intelligent life being common in the universe, and a total lack of evidence of intelligent life having ever arisen anywhere other than on the Earth.The first aspect of the Fermi paradox is a function of the scale or the large numbers involved: there are an estimated 200–400 billion stars in the Milky Way (2–4 × 1011) and 70 sextillion (7×1022) in the observable universe. Even if intelligent life occurs on only a minuscule percentage of planets around these stars, there might still be a great number of extant civilizations, and if the percentage were high enough it would produce a significant number of extant civilizations in the Milky Way. This assumes the mediocrity principle, by which the Earth is a typical planet.The second aspect of the Fermi paradox is the argument of probability: given intelligent life’s ability to overcome scarcity, and its tendency to colonize new habitats, it seems possible that at least some civilizations would be technologically advanced, seek out new resources in space, and colonize their own star system and, subsequently, surrounding star systems. Since there is no conclusive evidence on Earth or elsewhere in the known universe of other intelligent life after 13.8 billion years of the universe’s history, we have a conflict requiring a resolution. Some examples of possible resolutions are that intelligent life is rarer than we think, that our assumptions about the general development or behavior of intelligent species are flawed, or, more radically, that our current scientific understanding of the nature of the universe itself is quite incomplete.The Fermi paradox can be asked in two ways. The first is, “Why are no aliens or their artifacts found here on Earth, or in the Solar System?” If interstellar travel is possible, even the “slow” kind nearly within the reach of Earth technology, then it would only take from 5 million to 50 million years to colonize the galaxy. This is relatively brief on a geological scale, let alone a cosmological one. Since there are many stars older than the Sun, and since intelligent life might have evolved earlier elsewhere, the question then becomes why the galaxy has not been colonized already. Even if colonization is impractical or undesirable to all alien civilizations, large-scale exploration of the galaxy could be possible by probes. These might leave detectable artifacts in the solar system, such as old probes or evidence of mining activity, but none of these have been observed.The second form of the question is “Why do we see no signs of intelligence elsewhere in the universe?” This version does not assume interstellar travel, but includes other galaxies as well. For distant galaxies, travel times may well explain the lack of alien visits to Earth, but a sufficiently advanced civilization could potentially be observable over a significant fraction of the size of the observable universe. Even if such civilizations are rare, the scale argument indicates they should exist somewhere at some point during the history of the universe, and since they could be detected from far away over a considerable period of time, many more potential sites for their origin are within range of our observation. It is unknown whether the paradox is stronger for our galaxy or for the universe as a whole.

Where is everybody?

It gets stranger. Our sun is relatively young in the lifespan of the universe. There are far older stars with far older Earth-like planets, which should in theory mean civilizations far more advanced than our own. As an example, let’s compare our 4.54-billion-year-old Earth to a hypothetical 8-billion-year-old Planet Xtimeline.png

If Planet X has a similar story to Earth, let’s look at where their civilization would be today (using the orange timespan as a reference to show how huge the green timespan is):timeline-22.png

The technology and knowledge of a civilization only 1,000 years ahead of us could be as shocking to us as our world would be to a medieval person. A civilization 1 million years ahead of us might be as incomprehensible to us as human culture is to chimpanzees. And Planet X is 3.4 billion years ahead of us…

(Picture courtesy:wait but why)

Intelligent civilizations

There’s something called The Kardashev Scale, which helps us group intelligent civilizations into three broad categories by the amount of energy they use:

A Type I Civilization has the ability to use all of the energy on their planet. We’re not quite a Type I Civilization, but we’re close (Carl Sagan created a formula for this scale which puts us at a Type 0.7 Civilization).

A Type II Civilization can harness all of the energy of their host star. Our feeble Type I brains can hardly imagine how someone would do this, but we’ve tried our best, imagining things like a Dyson Sphere.

Dyson-Sphere-1024x1024.png

A Type III Civilization blows the other two away, accessing power comparable to that of the entire Milky Way galaxy.

If this level of advancement sounds hard to believe, remember Planet X above and their 3.4 billion years of further development. If a civilization on Planet X were similar to ours and were able to survive all the way to Type III level, the natural thought is that they’d probably have mastered inter-stellar travel by now, possibly even colonizing the entire galaxy.

One hypothesis as to how galactic colonization could happen is by creating machinery that can travel to other planets, spend 500 years or so self-replicating using the raw materials on their new planet, and then send two replicas off to do the same thing. Even without traveling anywhere near the speed of light, this process would colonize the whole galaxy in 3.75 million years, a relative blink of an eye when talking in the scale of billions of years:

Colonize-Galaxy.png

 

Source: Scientific American: “Where Are They”

Continuing to speculate, if 1% of intelligent life survives long enough to become a potentially galaxy-colonizing Type III Civilization, our calculations above suggest that there should be at least 1,000 Type III Civilizations in our galaxy alone—and given the power of such a civilization, their presence would likely be pretty noticeable. And yet, we see nothing, hear nothing, and we’re visited by no one.

 

Some possibilities to answer Fermi Paradox

Possibility 1) Super-intelligent life could very well have already visited Earth, but before we were here. In the scheme of things, sentient humans have only been around for about 50,000 years, a little blip of time. If contact happened before then, it might have made some ducks flip out and run into the water and that’s it. Further, recorded history only goes back 5,500 years—a group of ancient hunter-gatherer tribes may have experienced some crazy alien shit, but they had no good way to tell anyone in the future about it.

Possibility 2) The galaxy has been colonized, but we just live in some desolate rural area of the galaxy. The Americas may have been colonized by Europeans long before anyone in a small Inuit tribe in far northern Canada realized it had happened. There could be an urbanization component to the interstellar dwellings of higher species, in which all the neighboring solar systems in a certain area are colonized and in communication, and it would be impractical and purposeless for anyone to deal with coming all the way out to the random part of the spiral where we live.

Possibility 3) The entire concept of physical colonization is a hilariously backward concept to a more advanced species. Remember the picture of the Type II Civilization above with the sphere around their star? With all that energy, they might have created a perfect environment for themselves that satisfies their every need. They might have crazy-advanced ways of reducing their need for resources and zero interest in leaving their happy utopia to explore the cold, empty, undeveloped universe.

An even more advanced civilization might view the entire physical world as a horribly primitive place, having long ago conquered their own biology and uploaded their brains to a virtual reality, eternal-life paradise. Living in the physical world of biology, mortality, wants, and needs might seem to them the way we view primitive ocean species living in the frigid, dark sea. FYI, thinking about another life form having bested mortality makes me incredibly jealous and upset.

Possibility 4) There are scary predator civilizations out there, and most intelligent life knows better than to broadcast any outgoing signals and advertise their location. This is an unpleasant concept and would help explain the lack of any signals being received by the SETI satellites. It also means that we might be the super naive newbies who are being unbelievably stupid and risky by ever broadcasting outward signals. There’s a debate going on currently about whether we should engage in METI (Messaging to Extraterrestrial Intelligence—the reverse of SETI) or not, and most people say we should not. Stephen Hawking warns, “If aliens visit us, the outcome would be much as when Columbus landed in America, which didn’t turn out well for the Native Americans.” Even Carl Sagan (a general believer that any civilization advanced enough for interstellar travel would be altruistic, not hostile)called the practice of METI “deeply unwise and immature,” and recommended that “the newest children in a strange and uncertain cosmos should listen quietly for a long time, patiently learning about the universe and comparing notes, before shouting into an unknown jungle that we do not understand.” Scary.1

Possibility 5) There’s only one instance of higher-intelligent life—a “superpredator” civilization (like humans are here on Earth)—that is far more advanced than everyone else and keeps it that way by exterminating any intelligent civilization once they get past a certain level. This would suck. The way it might work is that it’s an inefficient use of resources to exterminate all emerging intelligences, maybe because most die out on their own. But past a certain point, the super beings make their move—because to them, an emerging intelligent species becomes like a virus as it starts to grow and spread. This theory suggests that whoever was the first in the galaxy to reach intelligence won, and now no one else has a chance. This would explain the lack of activity out there because it would keep the number of super-intelligent civilizations to just one.

Possibility 6) There’s plenty of activity and noise out there, but our technology is too primitive and we’re listening for the wrong things. Like walking into a modern-day office building, turning on a walkie-talkie, and when you hear no activity (which of course you wouldn’t hear because everyone’s texting, not using walkie-talkies), determining that the building must be empty. Or maybe, as Carl Sagan has pointed out, it could be that our minds work exponentially faster or slower than another form of intelligence out there—e.g. it takes them 12 years to say “Hello,” and when we hear that communication, it just sounds like white noise to us.

Possibility 7) We are receiving contact from other intelligent life, but the government is hiding it.The more I learn about the topic, the more this seems like an idiotic theory, but I had to mention it because it’s talked about so much.

Possibility 8) Higher civilizations are aware of us and observing us (AKA the “Zoo Hypothesis”). As far as we know, super-intelligent civilizations exist in a tightly-regulated galaxy, and our Earth is treated like part of a vast and protected national park, with a strict “Look but don’t touch” rule for planets like ours. We wouldn’t notice them, because if a far smarter species wanted to observe us, it would know how to easily do so without us realizing it. Maybe there’s a rule similar to the Star Trek’s “Prime Directive” which prohibits super-intelligent beings from making any open contact with lesser species like us or revealing themselves in any way, until the lesser species has reached a certain level of intelligence.

Possibility 9) Higher civilizations are here, all around us. But we’re too primitive to perceive them. Michio Kaku sums it up like this:

Let’s say we have an anthill in the middle of the forest. And right next to the anthill, they’re building a ten-lane super-highway. And the question is “Would the ants be able to understand what a ten-lane super-highway is? Would the ants be able to understand the technology and the intentions of the beings building the highway next to them?”

So it’s not that we can’t pick up the signals from Planet X using our technology, it’s that we can’t even comprehend what the beings from Planet X are or what they’re trying to do. It’s so beyond us that even if they really wanted to enlighten us, it would be like trying to teach ants about the internet.

Along those lines, this may also be an answer to “Well if there are so many fancy Type III Civilizations, why haven’t they contacted us yet?” To answer that, let’s ask ourselves—when Pizarro made his way into Peru, did he stop for a while at an anthill to try to communicate? Was he magnanimous, trying to help the ants in the anthill? Did he become hostile and slow his original mission down in order to smash the anthill apart? Or was the anthill of complete and utter and eternal irrelevance to Pizarro? That might be our situation here.

Possibility 10) We’re completely wrong about our reality. There are a lot of ways we could just be totally off with everything we think. The universe might appear one way and be something else entirely, like a hologram. Or maybe we’re the aliens and we were planted here as an experiment or as a form of fertilizer. There’s even a chance that we’re all part of a computer simulation by some researcher from another world, and other forms of life simply weren’t programmed into the simulation.


 

 

Advertisements

3 thoughts on “What really is Fermi Paradox.

  1. This is a great post about fermi paradox, I really enjoyed reading it.
    I did further research on it and found youtube videos from kurzgesagt. This has really changed my mind.

    Part 1:

    Part 2:

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s